Task Description
Kelly gives Ashley N chocolates each having a price pi, (where pi is the price of ith chocolate), and an integer X. She asks her to group the N chocolates in to pairs such that sum of prices of chocolates in each pair is a multiple of X.Output yes if its possible to group the chocolates in to pairs and No if its not possible.
Solution 1: Considering all possible nC2 pairs
The first solution is to try to form pairs and satisfies our constraint. If at any point, if the constraint is not satisfied, we will need to Backtrack and try out different pairs.For the size of array n, there are total of nC2≈n2 possible combinations. So the complexity will be O(n2).
Solution 2: Optimization of Solution 1
Consider four numbers a, b, c, dLet,
a + c is a multiple of X and, b + d is a multiple of XSo the numbers can be paired as [a, c] and [b, d]
Now,what will happen if a+b is also a multiple of X?
a + c = CONST1 * X
b + d = CONST2 * X
a + b = CONST3 * X
a + b + c + d = (CONST1 + CONST2) * X
CONST3 * X + (c + d) = (CONST1 + CONST2) * X
c + d = (CONST1 + CONST2 - CONST3) * X
So in general, if
- a and d pairs up,
- a pairs up with a set of numbers S1 and
- d pairs up with a set of numbers S2
With this conclusion, we can optimise our Solution 1 by eliminating the Backtrack. We can keep on pairing up numbers. If all numbers have pairs, we can return True. If any number does not have a pair, we can return False.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//-------------------------------------------------------------------------------
/**
* Linear Time solution to determine if all the numberes pairs up
* O(n^2) solution
* @param N number of elements in the array
* @param X
* @param p array of inputs
* @return max profit
*/
public static void bruteForce(int N, int X, int[] p) {
int[] paired = new int[N];
boolean pairFound = false;
if (N % 2 == 0) {
for(int i = 0; i < N; i++) {
if (paired[i] == 1) {
continue;
}
pairFound = false;
for(int j = i+1; j < N; j++) {
if (i == j || paired[j] == 1) {
continue;
}
int sum = p[i] + p[j];
if (sum % X == 0) {
pairFound = true;
paired[i] = 1;
paired[j] = 1;
break;
}
}
if (!pairFound) {
break;
}
}
}
if (pairFound) {
System.out.println("Yes");
} else {
System.out.println("No");
}
}
//--------------------------------------------------------------------------------
Time Complexity
Even after the optimization, at worst case, for each element we need to go through all elements. ∴ Total Time complexity is O(n2). The space complexity is O(n) for the array paired.Solution 3: Linear Time Solution
The problem can be solved in linear time by traversing the array only once.Principle
If sum of two numbers a and b is multiple of a number X,
Then,
Following are the linear time solutions.
Then,
(a % X) + (b % X) = X if a % x > 0 = 0 if a % X == 0So, in order for all numbers to pair up,
number of elements in the array with modulo X value C == number of elements in the array with module X value X - C
Solution Using Array
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//--------------------------------------------------------------------------------
/**
* Linear Time solution to determine if all the numberes pairs up
* O(n) solution
* @param N number of elements in the array
* @param X
* @param p array of inputs
* @return max profit
*/
public static void efficient(int N, int X, int[] p) {
int[] counts = new int[X]; // max value of X is 2000
boolean unmatchFound = true;
if (N % 2 == 0) { // no pairing for odd inputs
for (int i = 0; i < N; i++) { // O(n)
int idx = p[i] % X;
counts[idx]++;
}
if (counts[0] % 2 != 1) {
for (int i = 1; i <= X/2; i++) { // O(X)
unmatchFound = false;
if (counts[i] != counts[X-i]) {
unmatchFound = true;
break;
}
}
}
}
if (unmatchFound) {
System.out.println("No");
} else {
System.out.println("Yes");
}
}
//---------------------------------------------------------------------------------------
Solution Using Hash Map
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//---------------------------------------------------------------------------------------
/**
* Linear Time solution to determine if all the numberes pairs up
* O(n) solution
* @param N number of elements in the array
* @param X
* @param p array of inputs
* @return max profit
*/
public static void efficient2(int N, int X, int[] p) {
Map<Integer, Integer> pairTracker = new HashMap<Integer, Integer>();
boolean unmatchFound = true;
if (N % 2 == 0) { // no pairing for odd inputs
for (int i = 0; i < N; i++) { // O(n)
int remainder = p[i] % X;
if (!pairTracker.containsKey(remainder)) {
pairTracker.put(remainder, 1);
} else {
pairTracker.put(remainder, pairTracker.get(remainder) + 1);
}
}
if (!pairTracker.containsKey(0) || pairTracker.get(0) % 2 != 1) {
for (int i = 1; i <= X/2; i++) { // O(X)
unmatchFound = false;
int count1 = pairTracker.containsKey(i) ? pairTracker.get(i) : 0;
int count2 = pairTracker.containsKey(X-i) ? pairTracker.get(X-i) : 0;
//System.out.println(i + " : " + (X-i) + " || " + count1 + " : " + count2);
if (count1 != count2) {
unmatchFound = true;
break;
}
}
}
}
if (unmatchFound) {
System.out.println("No");
} else {
System.out.println("Yes");
}
}
}
No comments:
Post a Comment