Processing math: 100%

Saturday, May 26, 2018

Power of Powers - Minimum Number of Multiplications to compute Nth Power

Task Description

You need to find the minimum number of multiplications needed to get the desired power n of a number x using only previous computations.

Examples

The minimum number of multiplications required to compute 16th power of a number x is 4.
1. x×x=x2
2. x2×x2=x4
3. x4×x4=x8
4. x8×x8=x16
Similarly, the minimum number of multiplications required to compute the 15th power of the number is 5.
1. x×x=x2
2. x2×x2=x4
3. x4×x=x5
4. x5×x5=x10
5. x5×x10=x15
OR
1. x×x=x2
2. x2×x=x3
3. x3×x3=x6
4. x6×x6=x12
5. x12×x3=x15

Solution

As can be seem from the examples, the nth power of a number can be computed using previous results for power <n.

Also, as seen from the examples, there can be different combination of previous result to compute the nth power. For example, we can compute x15 using x5×x10 or using x12×x3. Obviously we have multiple choices to compute this value.

Minimum Number of Multiplications

Let, xn=xa×xb×xc×xd be one of the combination
Then, number of multiplication needed using this combination

= number of multiplication for xa + number of multiplication for xb + number of multiplication for xc + number of multiplication for xd + 3

The last number 3 comes from the fact that we need 3 more multiplications to multiply xa, xb, xc and xd.

The required minimum number of multiplications will be the minimum of all such combinations.

Computing the Number of Multiplications for all Combinations

int min = Integer.MAX_VALUE;
for i = 2 to n/2
   // x^15, 15/2 = 7, there are 2 x^7 and we need to multiply x^7 (2-1) times
   int part1 = (i-1) + numberOfMultiplicationFor(n / i);

   // 15 % 2 = 1, 
   int part2 = numberOfMultiplicationFor(n % i)
   
   int combinationNumber =  part1 + part2;

   // if n % i != 0, we need extra 1 multiplication x^14 x x
   combinationNumber += n % i == 0 ? 0 : 1;
   
   min = Math.min(min, combinationNumber)

Special Case for Even n

For Even n, we can simply compute the number of multiplication required using,
// this will be minimum for Even n
numberOfMultiplication = numberOfMultiplicationFor(n/2) + 1;

Recursive Implementation

    if f(n) gives the minimum number of multiplication required to compute
       nth power, then

    f(n) = f(n/2) + 1 if n is even
         = Min{
                for i = 2 to n/2 
                  (i-1) + f(n/i) + f(n%i) + (1 if n%i != 0)
              }

    Base Cases:
      f(0) = f(1) = 0
      f(2) = 1
      f(3) = 2
  
Recursive implementation will give the result, but if we don't use memoization, then it will end up calculating the same value again and again. This will result into high complexity.

To improve the complexity, we can either use Memoization or Botton Up Dynamic programming. Following the Dynamic Programming solution.

Bottom Up Dynamic Programming Approach

/* File: PowerOfPowers.java
* Created: 2018-05-26
* Author: Sabbir Manandhar
*
* Copyright (c) 2018 Hogwart Inc.
*/
import java.io.*;
import java.util.*;
/**
* Computes minimum number of multiplication required to compute the nth power of a number
*
* @author Sabbir Manandhar
* @version 1.0
*/
public class PowerOfPowers {
/**
* Driver method
*/
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter the value of n:" + compute(sc.nextInt()));
} // main
//---------------------------------------------------------------------------
/**
* Computes the minimum number of mulitplication
* using bottom dynamic programming
* @param
*/
public static int compute(int n) {
int[] dp = new int[n + 1];
for (int i = 0; i <= n; i++) {
dp[i] = helper(i, dp);
}
return dp[x];
} // compute
//---------------------------------------------------------------------------
/**
* helper method that computes miniumum number of multplications
* required to compute nth power of a number. It uses previous
* results to compute the value
*
* @param n nth power to compute
* @param dp previous results
*/
public static int helper(int n, int[] dp) {
int[] baseCases = new int[]{0, 0, 1, 2, 2};
if (n <= 3) return baseCases[n];
int min = Integer.MAX_VALUE;
if (n % 2 == 0) return dp[n / 2] + 1; // even n
for (int i = 2; i <= n / 2; i++) {
int part1 = (i - 1) + dp[n / i];
int part2 = dp[n % i];
int result = part1 + part2 + (n % i == 0 ? 0 : 1);
min = Math.min(result, min);
}
return min;
} // helper
} // PowerOfPowers







No comments:

Post a Comment